Rabu, 22 Juni 2011

Waktu

0 komentar
Perjalanan waktu bagaikan stasioner
Bernilai maksimum ketika dibutuhkan
Bernilai minimum ketika diabaikan
Itulah waktu....

Terkadang waktu berlari
Bagai kuda dengan kecepatan tak hingga
Terkadang waktu merangkak
Bagai bayi riang yang merangkak

Waktu berlari cepat
Ketika tidak ada pemikiran
Berapa peluang waktu itu akan berhenti
Waktu akan merangkak
Ketika adanya limit waktu

Waktu cepat, waktu lambat
semua itu f'(x) dari f(x)=17
Semua itu sin 180
Semua itu kosong

Waktu penentu segalanya

Tak ada umur jika waktu tak berjalan

Tak ada sejarah jika waktu tak merangkak

Faktorkanlah waktu

Sesuai kebutuhan

Sesungguhnya waktu selalu bernilai maksimum

By:

Rico Tantowi Putra

Kelas XI PSIA 4 SMA Plus Negeri 17 Palembang

Rumah Segi Empat

0 komentar
Ini merupakan salah satu puisi yang terdapat dalam buku antalogi puisi matematika. Juara satu tingkat SD.


Rumah Segi Empat

Di suatu simpang empat
Di pemukiman yang rapat
Terdapat sebuah rumah segi empat
Pintu dan jendelanya berwarna coklat

Di halaman trapesium hijau nan luas
Tumbuh lingkaran tanaman hias
Ada juga tanaman pisang, rambutan, dan nanas.
Diameter kebahagiaan terukir di sebuah senyuman puas


Dalam rumah sederhana segi empat
Terdapat kamar bujur sangkar sebanyak empat
Keliling kamarku tambahkan setiap sisinya yang berjumlah empat
Luas kamarku adalah hasil dari sisi kuadrat

Genting tanah liat menghiasi atap rumahku
Tampak bangun segitiga dari depan rumahku
Keliling segitiga tambahkannsetiap sisi atap rumahku
Luas segitiga alas kali tinggi dua sisi atap rumahku

Terdapat sebuah lukisan pemandangan terpajang
Di ruang tamuku yang berbentuk persegi panjang
Bila di tambahkan setiap sisi kita dapatkan keliling persegi panjang
Luas persegi panjang hasil perkalian lebar dan panjang

Wahai kawan akulah penghuni rumah segi empat
Aku ingin belajar dengan cermat dan giat

Agar memperoleh ilmu yang bermanfaat
Dan menjadi orang berguna di masyarakat

By:
Mutiara Hikmah
Kelas IV-A SD Negeri Talang Jawa Tanjung Enim

Soal prediksi UN SMP

0 komentar
Berikut soal - soal Prediksi UN SMP. Silakan klik link di bawah ini.
1. http://www.4shared.com/document/ABG4fnOh/PrediksiUN9_Th2010.html
2. http://www.4shared.com/document/oSk_T3PX/prediksi-soal-ipa-un-smp-2011.html
3. http://www.4shared.com/document/L1-_XaQc/UJIAN_AKHIR_NASIONAL__UAN__SMP.html
4. http://www.4shared.com/document/LxAcUR6X/PrediksiUN7_th2010.html
5. http://www.4shared.com/document/iWo6TKOb/PrediksiUn11_Th2010.html

Senin, 20 Juni 2011

Sayangku

0 komentar
Sayangku,,
Aku mempunyai sebuah cinta yang tidak akan pernah mempunyai limit.
Cinta ini akan aku persembahkan hanya untukmu.
Karena dirimu mempunyai nilai yang istimewa yang sama dengan nilai yang ada pada sudut istimewa.

Sayangku,,
Kau begitu berarti untukku.
Kau telah mengisi hatiku.
Kau juga telah menjadi anggota bagian dari hatiku.
Hatiku yang dulu bagaikan himpunan kosong.

Sayangku,,
Jangan pernah ragu pada diriku.
Jangan pernah berpikir jika aku akan membuat sebuah cinta segitiga.
Karena itu adalah hal yang tidak akan mungkin aku lakukan padamu.

Sayangku,,
Semoga cinta kita akan tetap bersatu meski banyak gelombang trigonometri yang menghalangi.
Semoga kita bisa meluruskan jalan yang penuh dengan titik belok di hidup ini.
dan semoga cinta kita akan abadi untuk selamanya.

Penemu Deret Fibonacci

0 komentar




Perkembangan matematika pada abad pertengahan di Eropa seiring dengan lahirnya Leonardo dari Pisa yang lebih dikenal dengan julukan Fibonacci (artinya anak Bonaccio). Bonaccio sendiri artinya anak bodoh, tapi dia bukan orang bodoh karena jabatannya adalah seorang konsul yang wewakili Pisa. Jabatan yang dipegang ini membuat dia sering bepergian. Bersama anaknya, Leonardo, yang selalu mengikuti ke negara mana pun dia melakukan lawatan.


Fibonacci menulis buku Liber Abaci setelah terinspirasi pada kunjungannya ke Bugia, suatu kota yang sedang tumbuh di Aljazair. Ketika ayahnya bertugas di sana, seorang ahli matematika Arab memperlihatkan keajaiban sistem bilangan Hindu-Arab. Sistem yang mulai dikenal setelah jaman Perang Salib. Kalkulasi yang tidak mungkin dilakukan dengan menggunakan notasi (bilangan) Romawi. Setelah Fibonacci mengamati semua kalkulasi yang dimungkinkan oleh sistem ini, dia memutuskan untuk belajar pada matematikawan Arab yang tinggal di sekitar Mediterania. Semangat belajarnya yang sangat mengebu-gebu membuat dia melakukan perjalanan ke Mesir, Syria, Yunani, Sisilia.

Mengarang buku
Tahun 1202 dia menerbitkan buku Liber Abaci dengan menggunakan – apa yang sekarang disebut dengan aljabar, dengan menggunakan numeral Hindu-Arabik. Buku ini memberi dampak besar karena muncul dunia baru dengan angka-angka yang bisa menggantikan sistem Yahudi, Yunani dan Romawi dengan angka dan huruf untuk menghitung dan kalkulasi.

Pendahuluan buku berisi dengan bagaimana menentukan jumlah digit dalam satuan numeral atau tabel penggandaan (baca: perkalian) dengan angka sepuluh, dengan angka seratus dan seterusnya. Kalkulasi dengan menggunakan seluruh angka dan pembagian, pecahan, akar, bahkan penyelesaian persamaan garis lurus (linier) dan persamaan kuadrat. Buku itu dilengkapi dengan latihan dan aplikasi sehingga menggairahkan pembacanya. Dasar pedagang, ilustrasi dalam dunia bisnis dengan angka-angka juga disajikan. Termasuk di sini adalah pembukuan bisnis (double entry), penggambaran tentang marjin keuntungan, perubahan (konversi) mata uang, konversi berat dan ukuran (kalibrasi), bahkan menyertakan penghitungan bunga. (Pada jaman itu riba, masih dilarang). Penguasa pada saat itu, Frederick, yang terpesona dengan Liber Abaci, ketika mengunjungi Pisa, memanggil Fibonacci untuk datang menghadap. Dihadapan banyak ahli dan melakukan tanya-jawab dan wawancara langsung, Fibonacci memecahkan problem aljabar dan persamaan kuadrat.

Pertemuan dengan Frederick dan pertanyaan-pertanyaan yang diajukan oleh ahli-ahli tersebut, dibukukan dan diterbitkan tidak lama kemudian. Tahun 1225 dia mengeluarkan buku Liber Quadrotorum (buku tentang Kuadrat) yang dipersembahkannya untuk Sang raja. Dalam buku itu tercantum problem yang mampu mengusik “akal sehat” matematikawan yaitu tentang problem kelinci beranak-pinak Pertanyaan sederhana tapi diperlukan kejelian berpikir.

“Berapa pasang kelinci yang akan beranak-pinak selama satu tahun. Diawali oleh sepasang kelinci, apabila setiap bulan sepasang anak kelinci menjadi produktif pada bulan kedua”

- Akhir bulan kedua, mereka kawin dan kelinci betina I melahirkan sepasang anak kelinci beda jenis kelamin.
- Akhir bulan kedua, kelinci betina melahirkan sepasang anak baru, sehingga ada 2 pasang kelinci.
- Akhir bulan ketiga, kelinci betina I melahirkan pasangan kelinci kedua, sehingga ada 3 pasang kelinci.
- Akhir bulan keempat, kelinci betina I melahirkan sepasang anak baru dan kelinci betina II melahirkan sepasang anak kelinci, sehingga ada 5 pasang kelinci.

Akan diperoleh jawaban: 55 pasang kelinci. Bagaimana bila proses itu terus berlangsung seratus tahun? Hasilnya (contek saja): 354.224.848.179.261.915.075.

Apakah ada cara cepat untuk menghitungnya? Di sini Fibonacci memberikan rumus bilangan yang kemudian dikenal dengan nama deret Fibonacci.

Source: http://kolom-biografi.blogspot.com/2009/11/biografi-fibonacci-penemu-deret.html

Penemu angka "NOL"

0 komentar
Kita pasti sudah sering mendengar istilah algoritma. Tapi, tahukah siapa penemunya? Bisa jadi kita menduga orang tersebut dari dunia Barat. Padahal, ia adalah seorang ilmuwan muslim yang bernama Al Khawarizmi.

Nama lengkapnya adalah Abu Ja’far Muhammad bin Musa al-Khawarizmi. Lahir di Khawarizmi, Uzbeikistan, pada 194 H/780 M. Kepandaian dan kecerdasannya mengantarkannya masuk ke lingkungan Dar al-Hukama (Rumah Kebijaksanaan), sebuah lembaga penelitian dan pengembangan ilmu pengetahuan yang didirikan oleh Ma’mun Ar-Rasyid, seorang khalifah Abbasiyah yang terkenal.

Dalam kamus besar bahasa Indonesia, algoritma berarti prosedur sistematis untuk memecahkan masalah matematis dalam langkah-langkah terbatas. Nama itu berasal dari nama julukan al-Khawarizmi. Karya Aljabarnya yang paling monumental berjudul al-Mukhtasar fi Hisab al-Jabr wal-Muqabalah (Ringkasan Perhitungan Aljabar dan Perbandingan). Dalam buku itu diuraikan pengertian-pengertian geometris. Ia juga menyumbangkan teorema segitiga sama kaki yang tepat, perhitungan tinggi serta luas segitiga, dan luas jajaran genjang serta lingkaran. Dengan demikian, dalam beberapa hal al-Khawarizmi telah membuat aljabar menjadi ilmu eksak.

Buku itu diterjemahkan di London pada 1831 oleh F. Rosen, seorang matematikawan Inggris. Kemudian diedit ke dalam bahasa Arab oleh Ali Mustafa Musyarrafa dan Muhammad Mursi Ahmad, ahli matematika Mesir, pada 1939. Sebagian dari karya al-Khawarizmi itu pada abad ke-12 juga diterjemahkan oleh Robert, matematikawan dari Chester, Inggris, dengan judul Liber Algebras et Al-mucabola (Buku Aljabar dan Perbandingan), yang kemudian diedit oleh L.C. Karpinski, seorang matematikawan dari New York, Amerika Serikat. Gerard dari Cremona (1114–1187) seorang matematikawan Italia, membuat versi kedua dari buku Liber Algebras dengan judul De Jebra et Almucabola (Aljabar dan Perbandingan). Buku versi Gerard ini lebih baik dan bahkan mengungguli buku F. Rozen.

Dalam bukunya, al-Khawarizmi memperkenalkan kepada dunia ilmu pengetahuan angka 0 (nol) yang dalam bahasa Arab disebut sifr. Sebelum al-Khawarizmi memperkenalkan angka nol, para ilmuwan mempergunakan abakus, semacam daftar yang menunjukkan satuan, puluhan, ratusan, ribuan, dan seterusnya, untuk menjaga agar setiap angka tidak saling tertukar dari tempat yang telah ditentukan dalam hitungan.

Akan tetapi, hitungan seperti itu tidak mendapat sambutan dari kalangan ilmuwan Barat ketika itu, dan mereka lebih tertarik untuk mempergunakan raqam al-binji (daftar angka Arab, termasuk angka nol), hasil penemuan al-Khawarizmi. Dengan demikian, angka nol baru dikenal dan dipergunakan orang Barat sekitar 250 tahun setelah ditemukan al-Khawarizmi. Dari beberapa bukunya, al-Khawarizmi mewariskan beberapa istilah matematika yang masih banyak dipergunakan hingga kini. Seperti sinus, kosinus, tangen dan kotangen.

Karya-karya al-Khawarizmi di bidang matematika sebenarnya banyak mengacu pada tulisan mengenai aljabar yang disusun oleh Diophantus (250 SM) dari Yunani. Namun, dalam meneliti buku-buku aljabar tersebut, al-Khawarizmi menemukan beberapa kesalahan dan permasalahan yang masih kabur. Kesalahan dan permasalahan itu diperbaiki, dijelaskan, dan dikembangkan oleh al-Khawarizmi dalam karya-karya aljabarnya. Oleh sebab itu, tidaklah mengherankan apabila ia dijuluki ”Bapak Aljabar.”

Bahkan, menurut Gandz, matematikawan Barat dalam bukunya The Source of al-Khawarizmi’s Algebra, al-Khawarizmi lebih berhak mendapat julukan “Bapak Aljabar” dibandingkan dengan Diophantus, karena dialah orang pertama yang mengajarkan aljabar dalam bentuk elementer serta menerapkannya dalam hal-hal yang berkaitan dengannya.

Di bidang ilmu ukur, al-Khawarizmi juga dikenal sebagai peletak rumus ilmu ukur dan penyusun daftar logaritma serta hitungan desimal. Namun, beberapa sarjana matematika Barat, seperti John Napier (1550–1617) dan Simon Stevin (1548–1620), menganggap penemuan itu merupakan hasil pemikiran mereka.

Selain matematika, Al-Khawarizmi juga dikenal sebagai astronom. Di bawah Khalifah Ma’mun, sebuah tim astronom yang dipimpinnya berhasil menentukan ukuran dan bentuk bundaran bumi. Penelitian itu dilakukan di Sanjar dan Palmyra. Hasilnya hanya selisih 2,877 kaki dari ukuran garis tengah bumi yang sebenarnya. Sebuah perhitungan luar biasa yang dapat dilakukan pada saat itu. Al-Khawarizmi juga menyusun buku tentang penghitungan waktu berdasarkan bayang-bayang matahari.

Buku astronominya yang mahsyur adalah Kitab Surah al-Ard (Buku Gambaran Bumi). Buku itu memuat daftar koordinat beberapa kota penting dan ciri-ciri geografisnya. Kitab itu secara tidak langsung mengacu pada buku Geography yang disusun oleh Claudius Ptolomaeus (100–178), ilmuwan Yunani. Namun beberapa kesalahan dalam buku tersebut dikoreksi dan dibetulkan oleh al-Khawarizmi dalam bukunya Zij as-Sindhind sebelum ia menyusun Kitab Surah al-Ard.

Selain ahli di bidang matematika, astronomi, dan geografi, Al-Khawarizmi juga seorang ahli seni musik. Dalam salah satu buku matematikanya, ia menuliskan pula teori seni musik. Pengaruh buku itu sampai ke Eropa dan dianggap sebagai perkenalan musik Arab ke dunia Latin. Dengan meninggalkan karya-karya besarnya sebagai ilmuwan terkemuka dan terbesar pada zamannya, Al-Khawarizmi meninggal pada 262 H/846 M di Baghdad.

Setelah al-Khawarizmi meninggal, keberadaan karyanya beralih kepada komunitas Islam. Yaitu, bagaimana cara menjabarkan bilangan dalam sebuah metode perhitungan, termasuk dalam bilangan pecahan; suatu penghitungan Aljabar yang merupakan warisan untuk menyelesaikan persoalan perhitungan dan rumusan yang lebih akurat dari yang pernah ada sebelumnya.

Di dunia Barat, Ilmu Matematika lebih banyak dipengaruhi oleh karya al-Khawarizmi dibanding karya para penulis pada Abad Pertengahan. Masyarakat modern saat ini berutang budi kepada al-Khawarizmi dalam hal penggunaan bilangan Arab. Notasi penempatan bilangan dengan basis 10, penggunaan bilangan irasional dan diperkenalkannya konsep Aljabar modern, membuatnya layak menjadi figur penting dalam bidang Matematika dan revolusi perhitungan di Abad Pertengahan di daratan Eropa. Dengan penyatuan Matematika Yunani, Hindu dan mungkin Babilonia, teks Aljabar merupakan salah satu karya Islam di dunia Internasional.

Source:
esq-news.com/2009/.../al-khawarizmi-penemu-bilangan-nol.html

Inspiration, pure and applied mathematics, and aesthetics

0 komentar

Mathematics arises from many different kinds of problems. At first these were found in commerce,land measurement, architecture and later astronomy; nowadays, all sciences suggest problems studied by mathematicians, and many problems arise within mathematics itself. For example, thephysicist Richard Feynman invented the path integral formulation of quantum mechanics using a combination of mathematical reasoning and physical insight, and today's string theory, a still-developing scientific theory which attempts to unify the four fundamental forces of nature, continues to inspire new mathematics. Some mathematics is only relevant in the area that inspired it, and is applied to solve further problems in that area. But often mathematics inspired by one area proves useful in many areas, and joins the general stock of mathematical concepts. A distinction is often made between pure mathematics and applied mathematics. However pure mathematics topics often turn out to have applications, e.g. number theory in cryptography. This remarkable fact that even the "purest" mathematics often turns out to have practical applications is what Eugene Wigner has called "the unreasonable effectiveness of mathematics".As in most areas of study, the explosion of knowledge in the scientific age has led to specialization: there are now hundreds of specialized areas in mathematics and the latest Mathematics Subject Classification runs to 46 pages. Several areas of applied mathematics have merged with related traditions outside of mathematics and become disciplines in their own right, including statistics,operations research, and computer science.

For those who are mathematically inclined, there is often a definite aesthetic aspect to much of mathematics. Many mathematicians talk about the elegance of mathematics, its intrinsicaesthetics and inner beauty. Simplicity and generality are valued. There is beauty in a simple and elegant proof, such as Euclid's proof that there are infinitely many prime numbers, and in an elegant numerical method that speeds calculation, such as the fast Fourier transform. G. H. Hardy in A Mathematician's Apology expressed the belief that these aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics. He identified criteria such as significance, unexpectedness, inevitability, and economy as factors that contribute to a mathematical aesthetic. Mathematicians often strive to find proofs that are particularly elegant, proofs from "The Book" of God according to Paul Erdős. The popularity of recreational mathematics is another sign of the pleasure many find in solving mathematical questions.

Source: http://en.wikipedia.org/wiki/Mathematics

Pyramids

0 komentar

Evidence of mathematical influences in art is present in the Great Pyramids, built by Egyptian Pharaoh Khufu and completed in 2560BC. Pyramidologists since the nineteenth century have noted the presence of the golden ratio in the design of the ancient monuments. They note that the length of the base edges range from 755–756 feet while the height of the structure is 481.4 feet. Working out the math, the perpendicular bisector of the side of the pyramid comes out to 612 feet.[6] If we divide the slant height of the pyramid by half its base length, we get a ratio of 1.619, less than 1% from the golden ratio. This would also indicate that half the cross-section of the Khufu’s pyramid is in fact aKepler’s triangle. Debate has broken out between prominent pyramidologists, including Temple Bell,Michael Rice, and John Taylor, over whether the presence of the golden ratio in the pyramids is due to design or chance. Of note, Rice contends that experts of Egyptian architecture have argued that ancient Egyptian architects have long known about the existence of the golden ratio. In addition, three other pyramidologists, Martin Gardner, Herbert Turnbull, and David Burton contend that:


Herodotus related in one passage that the Egyptian priests told him that the dimensions of the Great Pyramid were so chosen that the area of a square whose side was the height of the great pyramid equaled the area of the triangle.[7]

This passage, if true, would undeniably prove the intentional presence of the golden ratio in the pyramids. However, the validity of this assertion is found to be questionable.[8] Critics of this golden ratio theory note that it is far more likely that the original Egyptian architects modeled the pyramid after the 3-4-5 triangle, rather than the Kepler’s triangle. According to the Rhind Mathematical Papyrus, an ancient papyrus that is the best example of Egyptian math dating back to the Second Intermediate Period of Egypt, the Egyptians certainly knew about and used the 3-4-5 triangle extensively in mathematics and architecture. While Kepler’s triangle has a face angle of 51°49’, the 3-4-5 triangle has a face angle of 53°8’, very close to the Kepler’s triangle.[9] Another triangle that is close is one whose perimeter is 2π the height such that the base to hypotenuse ratio is 1:4/π. With a face angle of 51°50’, it is also very similar to Kepler’s triangle. While the exact triangle the Egyptians chose to design their pyramids after remains unclear, the fact that the dimensions of pyramids correspond so strongly to a special right triangle suggest a strong mathematical influence in the last standingancient wonder.

Source: http://en.wikipedia.org/wiki/Mathematics

Mathematical notation

0 komentar

Most of the mathematical notation in use today was not invented until the 16th century. Before that, mathematics was written out in words, a painstaking process that limited mathematical discovery.Euler(1707–1783) was responsible for many of the notations in use today. Modern notation makes mathematics much easier for the professional, but beginners often find it daunting. It is extremely compressed: a few symbols contain a great deal of information. Like musical notation, modern mathematical notation has a strict syntax (which to a limited extent varies from author to author and from discipline to discipline) and encodes information that would be difficult to write in any other way.

Mathematical language can be difficult to understand for beginners. Words such as or and only have more precise meanings than in everyday speech. Moreover, words such as open and field have been given specialized mathematical meanings. Technical terms such as homeomorphism and integrable have precise meanings in mathematics. Additionally, shorthand phrases such as "iff" for "if and only if" belong tomathematical jargon. There is a reason for special notation and technical vocabulary: mathematics requires more precision than everyday speech. Mathematicians refer to this precision of language and logic as "rigor".

Mathematical proof is fundamentally a matter of rigor. Mathematicians want their theorems to follow from axioms by means of systematic reasoning. This is to avoid mistaken "theorems", based on fallible intuitions, of which many instances have occurred in the history of the subject. The level of rigor expected in mathematics has varied over time: the Greeks expected detailed arguments, but at the time of Isaac Newton the methods employed were less rigorous. Problems inherent in the definitions used by Newton would lead to a resurgence of careful analysis and formal proof in the 19th century. Misunderstanding the rigor is a cause for some of the common misconceptions of mathematics. Today, mathematicians continue to argue among themselves about computer-assisted proofs. Since large computations are hard to verify, such proofs may not be sufficiently rigorous.

Axioms in traditional thought were "self-evident truths", but that conception is problematic. At a formal level, an axiom is just a string of symbols, which has an intrinsic meaning only in the context of all derivable formulas of an axiomatic system. It was the goal of Hilbert's program to put all of mathematics on a firm axiomatic basis, but according to Gödel's incompleteness theorem every (sufficiently powerful) axiomatic system has undecidable formulas; and so a final axiomatization of mathematics is impossible. Nonetheless mathematics is often imagined to be (as far as its formal content) nothing but set theory in some axiomatization, in the sense that every mathematical statement or proof could be cast into formulas within set theory.

Source:http://en.wikipedia.org/wiki/Mathematics

Save our beautiful earth!

Save our beautiful earth!
if not now, then when? if not us, then who?